ГМО продукты вред

admin
12.09.2019 0 Comment

Генетически модифицированные продукты питания

Одной их характерных особенностей XXI в. является активное развитие такой научной сферы как биотехнология. История существования этой науки насчитывает 20—25 лет, однако, несмотря на свой молодой возраст, биотехнология в настоящее время из разряда проектов, или теоретических разработок, уже перешла в нашу объективную реальность не только в промышленно-коммерческой сфере, но и обычном быту, и стала столь же обыденным явлением, как, например, компьютеризация или мобильная телефонная связь. Эта наука изучает возможности использования живых организмов, их систем или продукты их жизнедеятельности для решения технологических задач, а также возможности и пути создания живых организмов с необходимыми свойствами методом генной инженерии. Одна из задач генной инженерии — это создание генетически модифицированных организмов (ГМО).

Генетически модифицированный организм — это живой организм любого уровня сложности, содержащий генно-инженерный материал других организмов, способный к воспроизводству и передаче наследственного генетического материала. Более простыми словами это выглядит следующим образом: ГМО — это организм, содержащий в свих хромосомах гены других организмов и способный передавать их по наследству.

Как же получают ГМО? Генетически модифицированные организмы получают при помощи специальных молекулярно-биологических технологий, которые позволяют переносить отобранные индивидуальные гены из организма одного вида или рода в другой организм, причем этот перенос может осуществляться между филогенетически достаточно удаленными организмами. Подобные переносы наследственного материала практически никогда невозможно получить природным путем.

При создании генетически модифицированных организмов используют несколько различных методов:

  • • рекомбинантные методы, при которых формируются новые комбинации генетического материала путем внесения молекул нуклеиновой кислоты (произведенных любым способом вне организма) в любой вирус, бактериальную плазмиду или другую векторную систему. Затем эта система с новым генетическим материалом (донор) вводится в организм-хозяина (реципиента);
  • • комплекс методов, предусматривающих непосредственное введение в организм наследственного материала, подготовленного вне организма, включая микроинъекции, макроинъекции и микроинкапсуляции;
  • • слияние клеток, или методы гибридизации клеток, когда живые клетки с новыми комбинациями генетического материала формируются путем слияния двух или более клеток способом, который не реализуется в природных условиях.

Получение генетически модифицированных организмов никогда не являлось «искусством ради искусства», а преследовало вполне определенные цели. Встраивание «чужих» генов в геном хозяина преследует цель получить новый признак, несвойственный организму-реципиенту, например:

  • • устойчивость к определенным болезням;
  • • устойчивость к химическим веществам, губительно действующим на организм;
  • • повышенный синтез определенных химических соединений;
  • • новые потребительские свойства и др.

Поскольку методически ГМО создают при помощи переноса генетического материала от одного организма к другому, они получили название трансгенных организмов (от лат. trans — «сквозь, через, за»; приставка, означающая перенос).

Первопроходцем в деле создания трансгенных организмов являются Соединенные Штаты Америки. Краткая история появления генетически модифицированных организмов такова: первые трансгенные бактерии были получены в 1972 г., первое трансгенное млекопитающее (мышь) было получено в 1974 г., первое трасгенное растение (табак) — в 1983 г. В 1985 году там же, в США, были получены первые генетически модифицированные сельскохозяйственные животные — кролик, овца и свинья.

В настоящее время на промышленной основе уже выращиваются трансгенные растения и микроорганизмы, однако при существующих темпах развития биотехнологии в будущем можно ожидать и появление в этом ряду представителей животного мира. В мировой науке создано более сотни различных видов трансгенных растений, которые выращиваются во многих странах мира, какие-то из них в промышленных масштабах, а какие-то с исследовательской целью.

Повышенный интерес к трансгенным растениям с социальной точки зрения обусловлен тем, что традиционные сельскохозяйственные культуры не обеспечивают питанием все население Земли. Примерно 13% населения планеты страдает от недоедания и голода, а в свете прогнозов международных экспертов численность населения на Земле неуклонно растет, причем в основном за счет развивающихся стран, где сельское хозяйство находится на низком уровне и не в состоянии обеспечить население своих стран продовольствием даже в настоящее время.

Возможно, что за счет культивирования трансгенных растений и решиться проблема голода, однако, насколько это безопасно для человечества, не может ответить ни одна группа ученых-экспертов, поскольку вместе с новым генетическим материалом организм-реципиент приобретает не только желаемый признак, но целый набор новых качеств, которые определяются как свойствами самого встроенного гена, так и его опосредованным действием. Все негативные явления и события, происходящие при возделывании и потреблении ГМО, представляют собой потенциальные риски, которые можно объединить в три группы: пищевые, экологические и агротехнические.

В классификации пищевых рисков выделяют четыре основных направления.

  • 1. Риски, связанные с непосредственным действием токсичных и аллергенных трансгенных белков ГМО. С таким риском человечество уже столкнулось: генетически модифицированная кукуруза линии Starlink вызывала у человека сильнейшие аллергические реакции и в настоящее время запрещена к использованию во всем мире.
  • 2. Риски, связанные с опосредованным действием трансгенных белков на метаболизм растений.
  • 3. Риски, связанные с накоплением гербицидов и их метаболитов в модифицированных растениях.
  • 4. Риски, связанные с возможностью переноса трансгенных конструкций в микроорганизмы, находящиеся в симбиозе с человеком или широко использующиеся в пищевых производствах, например, кишечная палочка, бифидобактерии, ацидофильная палочка, болгарская палочка, термофильный стрептококк, молочнокислый стрептококк и др.

Исследования по оценке безопасности генетически модифицированного сырья и продуктов в мировой науке, безусловно, проводятся, но, к сожалению, следует признать, что в них отсутствует система, планомерность и глобальность. Они не идут по программам, разработанным сообща всем научным мировым сообществом.

Результаты исследования безопасности ГМ пищевого сырья и продуктов, полученные на сегодняшний день, нельзя назвать однозначными. Ряд ученых полагают, что данное сырье и продукты не представляют никакой опасности для здоровья людей, а в некоторых случаях даже полезны. Однако большая часть ученого мира, основываясь на своих научных исследованиях, придерживаются другой точки зрения и, публикуя год за годом результаты своих исследований, не подтверждают столь радужных выводов, а доказывают наличие реальной угрозы ГМО для живых организмов.

Приведем лишь некоторые примеры работ, свидетельствующих о реальной биологической опасности ГМО и ГМ-продуктов питания.

Достоверно установлено, что трансгенная соя, содержащая ген белка 2S альбумина бразильского ореха, обладает повышенным аллергическим потенциалом. Выявлены значимые сдвиги показателей крови (уровень эритроцитов, гемоглобина, гематокрита, ретикулоцитов, лимфоцитов, базофилов; средняя концентрация гемоглобина в эритроците; значение протромбинового времени) у крыс, получавших диету с 33%-ным содержанием ГМ-кукурузы. Трансгенная бактерия, продуцирующая аминокислоту триптофан наряду с обычным триптофаном синтезирует в незначительных количествах 1-Г-этилен-бис- триптофан, который попадает в пищу в виде пищевой добавки вместе с обычным триптофаном. Измененная форма триптофана вызывает у человека тяжелое заболевание — синдром эозинофилии-миалгии. ГМ-кукуруза линии Starlink запрещена к употреблению, поскольку вызывает у человека сильнейшие аллергии. При кормлении крыс соевой мукой, полученной из ГМ-сои (линия 40.3.2. устойчивая к гербициду раундапу, трансген СР4 EPSPS) смертность потомков первого поколения (/•() превышала 50%, а выжившие особи, достигшие репродуктивного возраста, страдали бесплодием. ГМ-горох провоцирует воспаление легких и вызывает изменение в работе иммунной системы у мышей; ГМ-картофель вызывает у крыс угнетение иммунной системы, уменьшение веса и патологические изменения во внутренних органах: разрушение слизистой оболочки пищеварительных органов, изменения селезенки, массы сердца, предстательной железы; морфологические изменения в печени, почках, толстой кишке; понижение гемоглобина; усиление диуреза. Таким образом, в научных экспериментах было показано, что ГМ сырье и продукты:

  • • обладают повышенным аллергическим потенциалом;
  • • угнетают иммунную систему;
  • • вызывают морфологические изменения во многих органах и тканях;
  • • изменяют показатели крови;
  • • снижают жизнеспособность и репродуктивные качества животных и др.

Исходя из вышеизложенного, весьма актуальной является ставшая уже крылатой фраза канадского микробиолога, профессора Д. Фейгапа: «Использовать сегодня трансгенные продукты в пищу все равно, что играть всем миром в «русскую рулетку».

Потенциальные и реальные риски, связанные с ГМО, заставляют правительства государств регламентировать выпуск, импорт и использование пищевого сырья и продуктов с использованием ДНК-технологий. В Российской Федерации вопросы, связанные с использование ГМО, регулируют более 100 законодательных актов, основополагающими из которых являются: Закон Российской Федерации от 07.02.1992 № 2300-1 «О защите прав потребителей», Федеральный закон от 05.07.1996 № 86-ФЗ «О государственном регулировании в области генно-инженерной деятельности» и Федеральные законы о внесении изменений в вышеуказанные законы (соответственно от 25.10.2007 № 234-ФЗ и от 12.07.2000 № 96-ФЗ). Пороговым уровнем содержания ГМО в пищевых продуктах в России, как и в странах ЕС, является 0,9%, а содержание ГМО в количествах, превышающих это значение, должно быть отражено на этикетке продукта. При этом следует отметить, что в разных странах нет единого мнения о безопасной концентрации ГМО в пищевых продуктах, например, в странах ЕС пороговое значение, подлежащее этикетированию, составляет 0,9%, в Австралии и Японии — 5% (как было в нашей стране до 2007 г.), в США, Канаде, Аргентине — продукты, содержащие ЕМО не этикетируются.

Как же обстоят дела с выращиванием сельскохозяйственных культур в промышленных масштабах на нашей планете? Посевные площади, занятые данными культурами, постоянно увеличивались начиная с 90-х годов прошлого века до 2010 г. (рис. 9.1). Ежегодный прирост земель, занятых трасгенными растениями, составлял в среднем 11,5%. Расширение площадей за последние четыре года официально не зарегистрировано. Но, несмотря на это, цифры говорят сами за себя. Реальный мировой резерв пахотно-пригодных земель на нашей планете составляет примерно 1 млрд га. И если учитывать, что в 2010—2013 гг. около 13% земель занимали генетически модифицированные растения, то получается, что в настоящее время примерно каждый восьмой гектар сельскохозяйственных угодий засеян трансгенными культурами.

Урожай, собранный с этих площадей, так или иначе поступает либо на наш стол, либо на корм животным, которые являются сырьем для наших пищевых продуктов. Такое распространение ЕМ-растений в мире непременно влечет за собой увеличение притока в нашу страну сырья и продуктов, содержащих ЕМО. 90% генетически модифицированных растений выращивается в пяти странах: США (40%), Бразилия (23%), Аргентина (14%), Канада (6%), Индия (6%). Однако количество стран, на которые приходятся оставшиеся 11%, уже превышает цифру 20.

Рис. 9.1. Площади мировых пахотных земель (млн га), занятые трансгенными растениями

До недавнего времени в нашей стране было запрещено выращивание генетически модифицированных растений, но с 1 июля 2014 г. вступило в силу Постановление Правительства Российской Федерации от 23.09.2013 № 839г. «О государственной регистрации генно-инженерно-модифицированных организмов, предназначенных для выпуска в окружающую среду, а также продукции, полученной с применением таких организмов или содержащей такие организмы», в котором указаны правила регистрации трансгенных растений для целевого выращивания. Видами целевого использования модифицированных организмов являются:

  • а) производство лекарственных средств для медицинского применения;
  • б) производство медицинских изделий;
  • в) производство продовольственного сырья и пищевых продуктов;
  • г) производство кормов и кормовых добавок для животных;
  • д) производство лекарственных средств для ветеринарного применения;
  • е) разведение и (или) выращивание на территории Российской Федерации модифицированных растений и животных, а также микроорганизмов для сельскохозяйственного назначения.

В целом пищевое сырье и продукты, содержащие ГМО, можно разделить на следующие категории.

  • 1. Трансгенные растения (овощи и фрукты в натуральном виде).
  • 2. Продукты переработки трансгенного сырья.
  • 3. Продукты, содержащие ГМ-ингредиенты (как правило, пищевые добавки).

Все они в той или иной степени содержат генетически модифицированные компоненты и должны подвергаться экспертизе. Анализ сырья и пищевых продуктов в нашей стране возложен на ФБУЗ «Центры гигиены и эпидемиологии», в состав которых должны входить лаборатории по качественному и количественному исследованию пищевых продуктов на наличие ГМО. Систематическое исследование пищевого сырья и продуктов проводится в нашей стране с 2003 г. (рис. 9.2). Максимальное количество образцов было исследовано в 2008 г. (почти 50 тысяч), затем количество тестируемых проб снизилось и в последние три года, оно колеблется в пределах 27 000—28 000. Доля продуктов, содержащих ГМО, снизилась с 11,9% в 2003 г. до 0,05% в 2013 г.

Рис. 9.2. Исследование пищевых продуктов в Российской Федерации

Наибольший удельный вес пищевых продуктов, содержащих компоненты ГМО, приходится на Центральный, Уральский и Приволжский Федеральные округи. При этом следует отметить, что в ряде округов проводятся лишь единичные анализы по обследованию пищевого сырья и продуктов на наличие ГМО — в Республиках Алтай, Саха, Владимирской, Свердловской, Томской, Сахалинской и других областях, Ханты-Мансийском, Таймырском, Эвенкийском, Усть-Ордынском, Бурятском, Чукотском и других автономных округах.

В заключение этой главы необходимо сказать, что несмотря на то, что по официальным данным количество продуктов на нашем рынке, содержащих генетически модифицированные компоненты, снижается год от года, следует знать, что, во-первых, даже 50 000 образцов, исследованных на предмет содержания ГМО, — цифра слишком малая для нашей страны, во-вторых, урожай генетически модифицированных растений, собранный со 130 млн га, так или иначе попадает в пищевую цепь человека. Поэтому нет абсолютной уверенности в адекватности оценки данной ситуации на продуктовом рынке в настоящее время. Кроме того, появление на отечественных полях трансгенных растений в ближайшем будущем увеличит поток этого сырья в отечественные пищевые производства. Поэтому современный потребитель может рассчитывать только на то, что государство возьмет на себя реальный контроль за потоками продуктов, содержащих ГМО, а производители и реализаторы пищевых товаров будут в строгости исполнять законы и постановления государства. Автор этого учебника, биохимик и генетик по своему образованию, с большой осторожностью относится к проблеме генетически модифицированного пищевого сырья и продуктов.

Что такое ГМО

ГМО расшифровывают как генно-модифицированный организм, ДНК которого подвергся целенаправленному изменению методами генной инженерии. Обычно цели таких экспериментов связаны с пользой для научной или хозяйственной необходимости.

Первыми модифицированными продуктами в 1994 году стали помидоры из Калифорнии, срок хранения которых увеличили простым удалением гена, ответственного за свойство гниения. Однако потребитель не оценил новшества, и через 3 года продукт убрали с рынка. В 90-х годах XX века с помощью метода генной инженерии от вируса кольцевой пятнистости на Гавайях была спасена культура папайи помещением антигена вируса в ее ДНК. Это помогло сделать ее устойчивой и, в конечном счете, спасти урожай региона.

Методы генной инженерии рассматриваются продовольственной и сельскохозяйственной организацией ООН (FAO) как необходимые технологии в рамках развития отрасли сельского хозяйства. Такой непосредственный перенос генов является новым этапом развития технологий селекции, создающих новые сорта растений, животных передачей признаков и свойств нескрещивающимся между собой видам.

Вопрос о пользе или вреде генетически модифицированных продуктов связан с целью методов. Три четвертых модификаций основных видов растений — сои, рапса, кукурузы, пшеницы, картофеля — проводят с пользой повышения их устойчивости к воздействию пестицидов, применяемых для борьбы с сорняками и насекомыми, а также для выведения растений с устойчивостью к насекомым и вирусам. Другое полезное назначение ГМО — это создание новых продуктов с улучшенным качественным витаминно-минеральным составом: к примеру, с повышенным содержанием витамина C или бета-каротина.

Есть ли польза от продуктов ГМО

Как ни странно это может звучать в свете устоявшихся стереотипов об опасности ГМО, но в контролируемых условиях генная инженерия, как и селекция, — это инструмент, который дает несомненную пользу для человека.

История с модифицированной гавайской папайей служит полезным тому примером. Однако страх неконтролируемого использования технологий в производстве продуктов, способных также принести человечеству вред, вылился в протестное движение Greenpeace. Активисты, выступающие с обвинениями ученых-генетиков в направленности опытов по получению генетически модифицированных продуктов против законов природы и потому несущих угрозу для здоровья людей, уничтожали деревья папайи на базе Гавайского университета, что придало проблеме широкий общественный резонанс.

Однако аргументы противников ГМО о вреде применения технологии в производстве продуктов не признаны наукой состоятельными, поскольку считается, что в природе также есть определенный процент случайных мутаций, и кроме того, безупречные с точки зрения пользы методы селекции по сути дела направлены на создание таких же «генетически модифицированных» организмов.

В начале нашего века данные исследований японских ученых трансгенной папайи подтвердили отсутствие в ее белке последовательностей цепочек, соответствующим известным аллергенам. После этого Япония открыла рынок продуктов для ГМО этой культуры, тем самым внеся в споры относительно пользы влияния генной инженерии для здоровья человека важное доказательство. Кроме способности технологий ГМО стать защитой против вреда вирусов для растений и человека, они способны также улучшать полезные свойства продуктов.

Так, группа ученых из Швейцарии вывела «золотой рис», содержащий бета-каротин от введенных трансгенов нарциссов — с целью усилить полезные свойства против дефицита витамина A — явления, распространенного среди жителей азиатских регионов. Эти опыты встретили обвинения общественности в том, что такой ГМО риса имеет канцерогенные свойства. Однако, подобная критика до сих пор не нашла отражения в официальных документах ВОЗ, в то время как доказана польза стограммовой порции золотого риса покрывать 120% потребности в витамине А.

Вред ГМО продуктов

За время существования технологии ГМО накопился ряд фактов о негативном влиянии измененных продуктов на здоровье:

  1. Потенциальный вред ГМО заключается в последствиях воздействия трансгенных продуктов на связанные с ними виды других растений, насекомых, животных.
  2. Некоторые ГМО содержат гены, дающие растениям свойства сохранять устойчивость к антибиотикам, которые впоследствии могут передаваться и человеку.
  3. Критики технологий ГМО считают, что за урожайность отвечает сочетание нескольких генов, которое не может быть смоделировано генной инженерией. Так, урожаи модифицированных культур кукурузы, пшеницы и рапса в США (где ГМО широко распространены) дают более низкие показатели при более высокой нагрузке пестицидов, чем в Западной Европе (где существует запреты на ГМО продукты) по тем же видам злаков.
  4. Изменение свойств ГМО культур на устойчивость к гербицидам повлияло на увеличение использования последних в 15 раз. Один из таких препаратов – глифосат — признан ВОЗ канцерогеном, который по данным 2016 года выявлен у 70% людей в США. А увеличение использования гербицидов, в свою очередь, повлияло на появление устойчивых к их действию супер-сорняков.
  5. Данные НИИ генома человека (США) показали, что изменения одного гена в организме вызывает изменения других генов по принципу домино, характер которых предугадать трудно.
  6. Полиамины — это вещества с токсическими, аллергическими и канцерогенными свойствами, которые в трупах свидетельствуют о разложении: в ГМО кукурузы отмечено их увеличенное содержание.
  7. Трансгены попадают в кровь, не распадаясь полностью в ЖКТ: это было установлено исследованиями, проведенными в Венгрии. Изучение образцов сыворотки крови людей показало наличие самой высокой концентрации таких ДНК у страдающих воспалениями кишечника. Есть также данные о связи продуктов, содержащих ГМО, с повышением холестерина, веса тела, ослаблением иммунитета, поражений мочеполовой, сердечно-сосудистой систем — до увеличения риска врождённых патологий.
  8. Повышение смертности. В 2012 году учёные Каенского университета во Франции после полутора лет кормления крыс кормами с ГМО пришли к выводу о влиянии трансгенных культур на повышение смертности в популяции.

Важно! Вред неконтролируемости технологий выращивания ГМО проявляется, в частности, в том, что из насчитываемых в мире 1000 трансгенных культур официально разрешены лишь 100.

Использование ГМО в Европе и России

Площади посева ГМО культур увеличиваются с каждым годом. По данным 2013 года они составляли почти половину сельскохозяйственных угодий России.

В 2010 году учёные Института проблем экологии и эволюции им. Северцова РАН провели эксперимент, который выявил влияние воздействия ГМО сои на организм хомяков. Результаты были красноречиво-пугающими: хомяки в третьем поколении показали задержки развития, влекущие за собой их нежизнеспособность, а половина особей утратила репродуктивные способности. Учёные подчёркивают о некорректности прямого перенесения значения данных для человеческого организма, однако вряд для животных был доказан.

В России производство продуктов с ГМО запрещено Федеральным законом от 3 июля 2016 года, однако эти запреты снимаются для импорта и продажи 17 линий ГМО, лидерами которых стали соя и кукуруза. Полный отказ от ГМО в России невозможен из-за требований ВТО. Однако разрешение можно получить лишь по результатам комплекс-теста на предмет безопасности по 80 позициям.

Кроме того, по Закону о правах потребителей измененные продукты выше 0,9% трансгенов должна сопровождать специальная маркировка «содержащие ГМ -компоненты».

Мировым лидером производства ГМО продуктов является США, где не только не существует для этого барьеров, а также активно проводятся кампании повышения доверия к трансгенным продуктам.

В Европе официально существует запрет на выращивание ГМО, однако торговля разрешена. При этом, Финляндия, Греция, Швейцария, Польша установили строгие запреты использования ГМО в корме животных, в то время как в России, Украине, Франции, Германии Швеции это практикуется: в частности, содержание ГМО сои в корме доходит до 60%.

Продукты, содержащие ГМО

  1. Кроме папайи, томатов, сои, кукурузы и риса эксперименты по изменению свойств проводили: с масличным рапсом, хлопком, сахарной свёклой, картофелем, бананами, арузами.
  2. Томаты известны модификациями по ускорению созревания, картофель – по усилению крахмалистых свойств.
  3. Эксперименты проводят и с животными: есть сведения о новозеландских коровах, молоко которых усилили гипоаллергенными свойствами; о китайских коровах, дающих молоко со сниженным количеством лактозы в составе.
  4. Однако, это лишь часть того, что мы знаем. Животные могут получать корма с ГМО, которые способны влиять в дальнейшем на их характеристики. Так, содержание сои в корме для скота по разным данным на территории Европы доходит до 60%. Трансгены могут переноситься через кишечник в селезенку, лейкоциты крови, печень. Известны случаи, нахождения содержания следов ГМО в молоке коров, телятине и свинине.
  5. Шоколад с содержанием лецитина из ГМО сои, а также так называемого лецитина, растительных жиров может таить возможный вред для организма
  6. Детское питание и сухие завтраки – те категории продуктов, которые также могут включать ГМО злаков.
  7. Мед также входит в список вероятных продуктов с ГМО: в его сортах часто присутствует измененный масличный рапс.
  8. Сухофрукты – ля увеличения срока хранения могут покрывать трансгенным соевым маслом.

Советы потребителям по выбору продуктов без ГМО

Проблема выявления продуктов из ГМО — в отсутствии явных признаков их содержания: это можно сделать в условиях лаборатории, и процесс проведения анализа составляет до 1,5 суток. Отличить ГМО при покупке продуктов в магазине помогут несколько правил:

  1. Следует внимательно читать состав продуктов на упаковке и во избежание вреда лучше перестраховываться и избегать те, что содержат ингредиенты на основе сои и кукурузы: соевой и кукурузной муки, масла и крахмала, а также сыра тофу, лецитина (Е322), гидролиза товарного растительного белка и полента.
  2. Маркировка на фруктах. Полезной будет привычка проверять специальный шифр на этикетках фруктов. Обычно он содержит 4 или 5 цифр обозначения свойств конкретного сорта.
  3. Пользу принесет привычка покупать продукты из проверенных источников: например, в магазинах органического питания, где можно проверить сертификацию товара, вероятность покупки ГМО намного ниже.
  4. Если есть такая возможность, полезным выращивать еду на собственном участке. Однако в таком случае нужно проверять посадочный материал на ГМО.
  5. В фастфудах и низкобюджетных магазинах высок риск встретить приносящие вред ГМО, поскольку трансгенные продукты прежде всего связаны с дешевыми сортами.
  6. Вред добавок в выпечке можно снизить проверкой на присутствие «улучшителей муки», аскорбиновой кислоты, пропитки для теста: по сути своей это ГМО энзимов с добавками.
  7. В молокопродуктах также трудно выявить компоненты ГМО, как и в мясе животных, которых выращивали на трансгенной сое или кукурузе. Стоит отдавать предпочтение полезным органическим молочным продуктам. От маргарина стоит отказаться вообще в пользу органического масла.
  8. Обычный шоколад также содержит лецитин из сои Е322. Обезопасить себя от его вреда можно переходом на органический шоколад.
  9. Добавки в пищу в виде препаратов, витаминов также следует подвергать контролю на состав, а также на репутацию производителя.
  10. Известны случаи смертельных исходов от употребления трансгенной добавки Триптофан или «неживотного инсулина».
  11. Мед также должен подвергаться тщательной проверке на состав. Лучше избегать импортных продуктов или маркированных как «производство нескольких стран»
  12. Сухофрукты не должны быть обработаны растительными маслами.
  13. Особый фактор риска содержания несущих вред ГМО в перечисленных выше продуктах производства США и Канады. В то же время продуктам финского производства с маркировкой об отсутствии ГМО, например, марки Valio, можно доверять.

Внимание! Шифр продукта с ГМО будет выглядеть 5-значным номером, начинающимся на 8. Больше информации о маркировках фруктов – в видео:

Таким образом, польза и вред ГМО в продуктах остается темой, вокруг которой не прекращаются жаркие споры. Изучив глубже вопрос, можно сделать вывод о том, что генная инженерия – это инструмент, который может обладать полезным или вредным действием, в зависимости от целей ее использования. Главной опасностью как негативного влияния ГМО на здоровье человека, так и глобального генетического загрязнения планеты остается выход процесса выведения растений и животных с заданными свойствами из-под контроля.

>ГМО — что это такое

  • Общая информация
  • Что такое ГМО?
  • Вред и польза ГМО
  • Список ГМО продуктов

Что такое ГМО?

Итак, что это такое ГМО и, как говорится, «с чем его едят»? Геннетически модифицированные организмы (далее ГМО) – это организмы, геном (ДНК) которых был целенаправленно изменен (улучшен, дополнен) при помощи методов генной инженерии (источник — Википедия). Важно отметить, что изменения, специально внесенные человеком в генотип таких организмов, в живой природе был бы невозможен из-за механизмов естественной рекомбинации и размножения.

Это связано с тем, что большинство живых организмов на Земле развивается постепенно, т.е. поколение за поколением, приспосабливаясь к изменяющимся условиям существования. Именно поэтому люди и научились влиять на процесс эволюции растений и животных, чтобы использовать передовые достижения генной инженерии в научных, а также в хозяйственных целях.

В принципе уже сама расшифровка ГМО дает минимальное представление о том, что из себя представляет генномодифицированный продукт.

Простыми словами это тот продукт, для производства которого было использовано улучшенное на генном уровне сырье. К примеру, хлеб из пшеницы, устойчивой к температурным перепадам, продукты из модифицированной сои и так далее.

В настоящее время для получения ГМО используют трансгены, т.е. определенные фрагменты ДНК, которые ученые встраивают в первоначальный геном организма. В итоге получаются трансгенные организмы, которые, к слову, способны передавать улучшенные ДНК по наследству своему потомству (трансгенез).

Генетическая инженерия подарила современным селекционерам передовой метод улучшения ДНК растений и животных. Это дает возможность решить глобальные продовольственные проблемы в тех странах, где людям не хватает пищи в силу климатических особенностей или других неблагоприятных условий.

Процесс создания ГМО или редактирование генома состоит из таких основных этапов как:

  • выделение изолированного гена, отвечающего за те или иные исключительные свойства организма;
  • введение генетического материала в молекулу нуклеиновой кислоты (вектор ДНК) для дальнейшей трансплантации в клетку нового организма;
  • перенос вектора в ДНК-модифицируемого организма;
  • преобразование клеток;
  • выборка ГМО и устранение неудачно модифицированных организмов.

Генномодифицированные организмы используют:

  • В прикладных и фундаментальных научных исследованиях. Мало кто знает, что благодаря ГМО ученые с каждым годом узнают все больше о механизмах регенерации и старения, о работе нервной системы, а также о таких тяжёлых заболеваниях как рак или болезнь Альцгеймера.
  • В фармакологии и медицине. Генно-инженерный инсулин человека был зарегистрирован в 1982 году. С этого момента началась новая эра в развитии современной медицины. Благодаря прорыву в генной инженерии сейчас существует множество жизненно важных препаратов, произведённых на основе рекомбинантных человеческих белков, например, вакцины.
  • В сельском хозяйстве и в животноводстве. Селекционеры используют ГМО для создания новых сортов растений, которые будут приносить больший урожай и при этом будут устойчивыми к заболеваниям, климатическим изменениям и другим внешним факторам. Улучшенные ДНК животных помогают защитить их от некоторых заболеваний. К примеру, генномодифицированные свиньи не заражаются африканской свиной чумой.

По поводу ГМО на протяжении большого количества времени велись ожесточенные споры. Все дело в том, что противники генномодифицированных продуктов утверждали, что они могут наносить непоправимый вред здоровью человека (провоцируют развитие рака, вызывают мутации). Помимо того, измененный ДНК продуктов будет оказывать негативное влияние и на здоровье будущих поколений, вызывая страшные заболевания у таких генномодифицированных людей.

Однако на сегодняшний день у сторонников генной инженерии есть неопровержимые доказательства безопасности улучшенных при помощи трансгенов продуктов. На заре развития селекционного сельского хозяйства такие ученые как Мичурин пытались улучшить продовольственные виды растений при помощи различных ухищрений.

К примеру, чтобы получить определенные свойства (устойчивость к низким или высоким температурам, к засухе, к нехватке полезных элементов, к болезням, а также к паразитам) приходилось скрещивать или прививать черенки нескольких видов растений, чтобы в конечном итоге семена для посадки, обладали определенными качествами. Сейчас же достаточно лишь добавить нужный ген в ДНК исходного организма.

Если говорить о ГМО в широком смысле, то это организмы будущего, полученные благодаря возможности человека влиять на процесс эволюции. Ученые, занимающиеся генной инженерией, ставят перед собой благородные задачи – обеспечить людей по всей земле продовольствием в нужных объемах.

А это сделать действительно непросто, ведь есть места, где вырастить урожай или разводить скот для пропитания действительно очень трудно. Итак, как расшифровывается аббревиатура ГМО мы узнали, теперь поговорим о наболевшем.

Вред и польза ГМО

Как мы выяснили выше, продукты ГМО содержат в своем составе компоненты генетически модифицированных организмов. Получается, что не только сами плодовоовощные культуры и злаки (кукуруза, картофель, рожь, пшеница, соя и так далее) можно назвать ГМО едой, но и продукты, в составе которых они встречаются.

К примеру, соевые сосиски или ливерная колбаса, хлебобулочные изделия, кетчуп, соусы, майонез, сладости и так далее. Важно отметить, что мясо крупного рогатого скота или птицы, в кормлении которых используют ГМО растения нельзя причислять к генномодифицированным продуктам.

Ранее предполагалось, что измененные клетки геннетически модифицированных продуктов способны встраиваться в ДНК организма, который их потребляет. Однако, как было доказано учеными это утверждение ложно. Любая пища пусть даже и содержащая ГМО под воздействием желудочного сока и ферментов распадается в организме человека на жирные кислоты, сахара, аминокислоты и триглицериды.

Это означает, что обычные продукты также как и генномодифицированные одинаково усваиваются и не наносят вреда здоровью. Еще одна притча во языцех о связи продуктов ГМО и риска развития онкологических заболеваний, а также мутаций на уровне ДНК была развенчана научным сообществом.

В 2005 году отечественные ученые провели эксперимент на мышах и получили печальные результаты. Как оказалось, смертность мышей от онкологических заболеваний, употреблявших в пищу генномодифицированную сою, резко увеличилась. Подобные эксперименты проводились по всему миру.

Исследователи спешили обнародовать сенсационные результаты своих наблюдений, порой забывая все досконально перепроверять. Средства массовой информации, находящиеся в состоянии вечной погони за «жареными фактами», на протяжении нескольких лет смаковали эту тему и писали исключительно о возможном вреде ГМО.

Действительно только единицы пытались разобраться в вопросе без эмоций и добраться до истины. В итоге массовая истерия по поводу ГМО достигла своего апогеи и сотни тысяч людей по всему миру свято уверовали, что нет ничего более ужасного в их жизни, чем генномодифицированные продукты.

На форумах в интернете, дома на кухне, на улице и в магазине мамочки делились своими опасениями по поводу детского питания, в составе которого есть зловещее ГМО. Бабушки не могли спокойно спать и думали только о пользе и вреде какао Несквик, шоколада и других сладостей, которые так любят их внуки, а отцы и деды сокрушались по поводу «уже не тех» мясных продуктов и химического хлеба.

На самом деле за последнее время ученые так и не смогли найти доказательств того, что употребляя в пищу ГМО человек увеличивает риск развития онкологических или других заболеваний. А все ранее проведенные эксперименты не смогли устоять перед всесторонней критикой и проверкой.

Оказалось, что мыши и крысы, которые использовались для проведения опытов, погибали также массово как при использовании в их рационе ГМО, так и обычной пищи. Проблема была не в плодах генной инженерии, а в данном конкретном виде грызунов, используемых в лабораторных исследованиях. Они генетически более подвержены онкологическим заболеваниям, независимо от рациона питания.

По мнению Всемирной организации здравоохранения говорить о вреде ГМО продуктов можно только опираясь на результаты конкретных исследований того или иного вида. Доступные во всем мире геннетическимодифицированные продукты проходят серьезный контроль качества и безопасности. Они употребляются в пищу целыми обособленными нациями без каких-либо массовых негативных последствий, поэтому могут считаться безопасными.

Справедливости ради стоит рассказать и о некоторых пусть и не смертельных, но все-таки негативных моментах, связанных с ГМО:

  • Доказано, что там, где раньше произрастали геннетически модифицированные растения, обычные сорта расти больше никогда не смогут. Это связано с тем, что почва на месте произрастания ГМО растений отравлена пестицидами, гербицидами и другими ядовитыми соединениями, применяемыми в сельском хозяйстве для борьбы с вредителями и болезнями. Они убивают обычные культуры, но не могут навредить генномодифицированным культурам.
  • ГМО растения могут накапливать ядовитые вещества (пестициды, яды).
  • Из-за изменения структуры ДНК усиливаются не только положительные, но и некоторые отрицательные свойства растений. К примеру, ГМО соя или картофель могут вызывать стойкую аллергическую реакцию.
  • ГМО растения вытесняют другие сорта своего вида. Это связано с особенностью их опыления.
  • Семена растений ГМО – это одноразовый материал, который не дает потомства. Это важный момент, который связан в первую очередь с коммерцией. Когда государство переходит исключительно на ГМО растения, отказываясь от собственных посевов, то автоматически попадает в зависимость от компаний-производителей семян.

Список ГМО продуктов

В 20016 году больше сотни всемирно известных ученых (химики, биологи, медики) среди которых есть и нобелевские лауреаты обратились с открытым письмом в ООН и Greenpeace с просьбой остановить травлю ГМО. Даже правоверные иудеи признали геннетически модифицированные продукты кашерными, мусульмане, что они халяльны, а католическая церковь говорит, что именно ГМО помогут решить продовольственную проблему в мире.

Однако если вы все-таки хотите знать, что именно употребляете в пищу, то ниже представлен список производителей, которые используют в составе своих продуктов ГМО и их торговые наименования.

Название продукта Торговое наименование
Шоколад Hershey‘s, Fruit&Nut, Milky Way, Mars, M&M, Twix, Snickers, Cadbury, Ferrero, Nestle, M&M’S
Какао, чай, кофе, шоколадные напитки Cadbury, Nestle, Nesquik, Kraft, Lipton, Беседа, Brooke Bond
Безалкогольные напитки Соса-Соla, Pepsi, Sprite, Fanta, 7-up, Dr. Pepper, тоник Kinley, Mountain Dew, Фруктайм, Фиеста
Хлопья и сухие завтраки Kellogg‘s, Corn Flakes, Rice Krispies, Frosted Flakes, Corn Pops, Froot Loops, Smacks, Apple Jacks, Chocolate Chip, All-Bran, Raisin Bran Crunch, Honey Crunch Corn Flakes, Cracklin’Oat Bran
Печенье и сладости Parmalat, Kraft, Юбилейное, продукция Hershey’s (Toblerone, Kit-Kat, Mini Kisses, Kisses, Milk Chocolate Chips, Semi-Sweet Baking Chips, Milk Chocolate Chips, арахисовое масло Reese’s Peanut Butter Cups, сиропы Strawberry Syrup, Chocolate Syrup, Special Dark Chocolate Syrup), Pop Tarts, Crispix
Консервированные супы Campbell
Рис Uncle Bens
Соусы (кетчуп, майонез, заправки для салатов), приправы, сухие супы Gallina Blanca, Knorr, Hellman‘s, Heinz, Ряба, Впрок, Балтимор, Calve, Maggi
Мясные и колбасные изделия Фарш и паштет от ЗАО «Микояновский мясокомбинат», фарш ОАО «Черкизовский МПЗ», паштет ООО «МК Гурман», ООО «Мясокомбинат Клинский», ООО «МЛМ-РА», ООО «РОС Мари Лтф», ООО «Колбасный комбинат «Богатырь», ООО «Дарья — полуфабрикаты», ООО «Талосто-продукты», ЗАО «Вичюнай», МПЗ «КампоМос», МПЗ «Таганский».
Детское питание Similac, Hipp, Nestle, Kraft, Делми Unilever
Консервированные овощи Бондюэль
Молочные продукты Danon, ОАО «Лианозовский молочный комбинат», Campina, Ehrmann
Мороженое Альгида
Масло, маргарин, спред Пышка, Делми
Чипсы Русская картошка, Lays, Pringles

Это далеко не исчерпывающий перечень торговых наименований и производителей, которые используют ГМО. Поскольку многие относятся к генномодифицированным организмам резко отрицательно, не все компании хотят портить свой имидж, и открыто заявлять о том, что они используют достижения генной инженерии. И хотя проблема ГМО больше раздута, а вред от таких продуктов явно преувеличен, только сам человек может решить для себя употреблять их в пищу или нет.

Генетически модифицированный организм

Запрос «ГМО» перенаправляется сюда; см. также другие значения.

Генети́чески модифици́рованный органи́зм (ГМО) — организм, генотип которого был искусственно изменён при помощи методов генной инженерии. Это определение может применяться для растений, животных и микроорганизмов. Всемирная организация здравоохранения даёт более узкое определение, согласно которому генетически модифицированные организмы — это организмы, чей генетический материал (ДНК) был изменен, причём такие изменения были бы невозможны в природе в результате размножения или естественной рекомбинации.

Генетические изменения, как правило, производятся в научных или хозяйственных целях. Генетическая модификация отличается целенаправленным изменением генотипа организма в отличие от случайного, характерного для естественного и искусственного мутационного процесса.

Основным видом генетической модификации в настоящее время является использование трансгенов для создания трансгенных организмов.

В сельском хозяйстве и пищевой промышленности под ГМО подразумеваются только организмы, модифицированные внесением в их геном одного или нескольких трансгенов.

Специалистами получены научные данные об отсутствии повышенной опасности продуктов из генетически модифицированных организмов как таковых по сравнению с традиционными продуктами.

Цели создания ГМО

Продовольственная и сельскохозяйственная организация ООН (FAO) рассматривает использование методов генетической инженерии для создания трансгенных сортов растений либо других организмов как неотъемлемую часть сельскохозяйственной биотехнологии. Прямой перенос генов, отвечающих за полезные признаки, является естественным развитием работ по селекции животных и растений, расширивших возможности селекционеров в части управляемости процесса создания новых сортов и расширения его возможностей, в частности, передачи полезных признаков между нескрещивающимися видами.

Использование как отдельных генов различных видов, так и их комбинаций в создании новых трансгенных сортов и линий является частью стратегии FAO по характеризации, сохранению и использованию генетических ресурсов в сельском хозяйстве и пищевой промышленности.

Исследование 2012 года (основанное в том числе на отчётах компаний-производителей семян) использования трансгенных сои, кукурузы, хлопка и канолы в 1996—2011 годах показало, что устойчивые к гербицидам культуры оказываются более дешёвыми в выращивании и в ряде случаев более урожайными. Культуры содержащие инсектицид давали больший урожай, особенно в развивающихся странах, где использовавшиеся до этого пестициды были малоэффективными. Также устойчивые к насекомым культуры оказывались более дешёвыми в выращивании в развитых странах. По данным метаанализа, проведённого в 2014 году, урожайность ГМО-сельхозкультур за счёт снижения потерь от вредителей на 21,6 % выше, чем у немодифицированных, при этом расход пестицидов ниже на 36,9 %, затраты на пестициды снижаются на 39,2 %, а доходы сельхозпроизводителей повышаются на 68,2 %.

Методы создания ГМО

Основная статья: Генетическая инженерия См. также: Редактирование генома

Основные этапы создания ГМО:

  1. Получение изолированного гена.
  2. Введение гена в вектор для переноса в организм.
  3. Перенос вектора с геном в модифицируемый организм.
  4. Преобразование клеток организма.
  5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

Методы осуществления каждого из этих этапов составляют в совокупности методы генетической инженерии.

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100—120 азотистых оснований (олигонуклеотиды).

Чтобы встроить ген в вектор, используют ферменты — рестриктазы и лигазы. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор.

Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки. Популярными методами введения вектора в клетку растений является использование почвенной бактерии Agrobacterium tumefaciens или генной пушки. Для генетической инженерии животных используют трансфекцию, вектора, на основе ретровирусов и другие методы.

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детёныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение

В исследованиях

В настоящее время генетически модифицированные организмы широко используются в фундаментальных и прикладных научных исследованиях. С помощью генно-модифицированных организмов исследуются закономерности развития некоторых заболеваний (болезнь Альцгеймера, рак), процессы старения и регенерации, изучается функционирование нервной системы, решается ряд других актуальных проблем биологии и современной медицины.

В медицине и фармацевтической промышленности

Генетически модифицированные организмы используются в прикладной медицине с 1982 года. В этом году зарегистрирован в качестве лекарства генно-инженерный человеческий инсулин, получаемый с помощью генетически модифицированных бактерий. В настоящее время фармацевтическая промышленность выпускает большое количество лекарственных средств на основе рекомбинантных белков человека: такие белки производят генетически модифицированные микроорганизмы, либо генетически модифицированные клеточные линии животных. Генетическая модификация в данном случае заключается в том, что в клетку интродуцируется ген белка человека (например, ген инсулина, ген интерферона, ген бета-фоллитропина). Эта технология позволяет выделять белки не из донорской крови, а из ГМ-организмов, что снижает риск инфицирования препаратов и повышает чистоту выделенных белков. Ведутся работы по созданию генетически модифицированных растений, продуцирующих компоненты вакцин и лекарств против опасных инфекций (чумы, ВИЧ). На стадии клинических испытаний находится проинсулин, полученный из генетически модифицированного сафлора. Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз.

Бурно развивается новая отрасль медицины — генотерапия. В её основе лежат принципы сходные с использующимися при создании ГМО, но в качестве объекта модификации выступает геном соматических клеток человека. В настоящее время генотерапия — один из главных методов лечения некоторых заболеваний. Так, уже в 1999 году каждый четвёртый ребёнок, страдающий SCID, лечился с помощью генной терапии Генотерапию, кроме использования в лечении, предлагают также использовать для замедления процессов старения.

В сельском хозяйстве

Основная статья: Генетически модифицированная пища

Генная инженерия используется для создания новых сортов растений, устойчивых к неблагоприятным условиям среды и вредителям, обладающих лучшими ростовыми и вкусовыми качествами.

Проходят испытания генетически модифицированные сорта лесных пород со значительным содержанием целлюлозы в древесине и быстрым ростом.

Однако, некоторые компании устанавливают ограничения на использование продаваемых ими генетически модифицированных семян, запрещая высеивание самостоятельно полученных семян. Для этого используются юридические ограничения типа контрактов, патентов или лицензирования семян. Также для подобных ограничений одно время прорабатывались технологии ограничительные технологии (GURT), которые так и не использовались в коммерчески доступных ГМ-линиях. Технологии GURT либо делают стерильным выращенные семена (V-GURT), либо требуют особых химических веществ для проявления внесённого с помощью модификации свойства (T-GURT). При этом стоит отметить, что в сельском хозяйстве широко применяются гибриды F1, которые, как и ГМО-сорта, требуют ежегодной закупки семенного материала. Некоторые продукты содержат ген, приводящий к стерильности пыльцы, например, ген барназы, полученный из бактерии Bacillus amyloliquefaciens.

С 1996 года, когда началось выращивание ГМ-растений, площади, занятые ГМ-культурами, выросли до 175 млн гектаров в 2013 году (более 11 % от всех мировых посевных площадей). Такие растения выращиваются в 27 странах, особенно широко — в США, Бразилии, Аргентине, Канаде, Индии, Китае, при этом, начиная с 2012 года, производство ГМ-сортов развивающимися странами превысило производство в промышленно развитых государствах. Из 18 миллионов фермерских хозяйств, выращивающих ГМ-культуры, более 90 % приходится на малые хозяйства в развивающихся странах.

На 2013 год, в 36 странах, регулирующих использование ГМ-культур, было выдано 2833 разрешения на использование таких культур, из них 1321 — для употребления в пищу, и 918 — на корм скоту. Всего на рынок допущено 27 ГМ-культур (336 сортов), основными культурами являются: соя, кукуруза, хлопок, канола, картофель. Из применяемых ГМ-культур подавляющее большинство площадей занимают культуры, устойчивые к гербицидам, насекомым-вредителям или культуры с комбинацией этих свойств.

В животноводстве

Методом генного редактирования удалось создать свиней, которые потенциально устойчивы к африканской свиной чуме. Изменение пяти «букв» в коде ДНК гена RELA у выращиваемых на фермах животных, позволило получить вариант гена, который, предположительно защищает их диких сородичей: бородавочников и кустарниковых свиней от этого заболевания.

Другие направления

Разрабатываются генетически модифицированные бактерии, способные производить экологически чистое топливо.

В 2003 году на рынке появилась GloFish — первый генетически модифицированный организм, созданный с эстетическими целями, и первое домашнее животное такого рода. Благодаря генной инженерии популярная аквариумная рыбка Данио рерио получила несколько ярких флуоресцентных цветов.

В 2009 году выходит в продажу ГМ-сорт розы «Applause» с цветами «синего цвета» (на самом деле они сиреневые).

Безопасность

Основная статья: Исследования безопасности генетически модифицированных организмов

Появившаяся в начале 1970-х годов технология рекомбинантных ДНК (en:Recombinant DNA) открыла возможность получения организмов, содержащих инородные гены (генетически модифицированных организмов). Это вызвало обеспокоенность общественности и положило начало дискуссии о безопасности подобных манипуляций.

В 1974 году в США была создана комиссия из ведущих исследователей в области молекулярной биологии для исследования этого вопроса. В трёх наиболее известных научных журналах (Science, Nature, Proceedings of the National Academy of Sciences) было опубликовано так называемое «письмо Берга», которое призывало учёных временно воздержаться от экспериментов в этой области.

В 1975 году прошла Асиломарская конференция, на которой биологами обсуждались возможные риски, связанные с созданием ГМО.

В 1976 году Национальным институтом здоровья (США) была разработана система правил, строго регламентировавшая проведение работ с рекомбинантными ДНК. К началу 1980-х годов правила были пересмотрены в сторону смягчения.

В начале 1980-х годов в США были получены первые линии ГМО, предназначенные для коммерческого использования. Правительственными организациями, такими как NIH (Национальный институт здоровья) и FDA (Управление по контролю за качеством пищевых продуктов, медикаментов и косметических средств), была проведена всесторонняя проверка этих линий. После того, как была доказана безопасность их применения, эти линии организмов получили допуск на рынок.

Первым документом, которым регулировалась деятельность по производству и обращению с гмо-материалами на территории Евросоюза стала Директива 90/219/ЕЕС «Об ограниченном использовании генетически изменённых микроорганизмов».

На вопрос о безопасности продуктов из генетически модифицированных организмов Всемирная организация здравоохранения отвечает о невозможности общих утверждений об опасности или безопасности таких продуктов, но о необходимости отдельной оценки в каждом случае, так как разные генетически модифицированные организмы содержат разные гены. Также ВОЗ считает, что доступные на международном рынке гм-продукты проходят проверки безопасности и употреблялись в пищу популяциями целых стран без отмеченных эффектов, и соответственно вряд ли могут представлять опасность для здоровья.

В настоящее время специалистами получены научные данные об отсутствии повышенной опасности продуктов из генетически модифицированных организмов в сравнении с продуктами, полученными из организмов, выведенных традиционными методами. Как отмечается в докладе 2010 года Генерального Директората Европейской комиссии по науке и информации:

Главный вывод, вытекающий из усилий более чем 130 научно-исследовательских проектов, охватывающих 25 лет исследований и проведённых с участием более чем 500 независимых исследовательских групп, состоит в том, что биотехнологии и, в частности, ГМО как таковые не более опасны, чем, например, традиционные технологии селекции растений

В 2012 году в журнале Nature была опубликована статья о долгосрочном использовании ГМ-культур, производящих инсектицидные белки, и не требующих дополнительной обработки инсектицидами. Это естественным образом увеличивало популяцию хищных насекомых, и значительно сокращало число вредных насекомых.

В 2014 году был выпущен метаанализ 147 исследований, посвящённых воздействию ГМО на сельское хозяйство. Среди прочих достоинств, авторы отмечают, что выращивание ГМ-культур, вместо традиционных, в среднем сокращает использование пестицидов на 37%.

Обзор 1783 публикаций на тему ГМО с выводом: никаких особенных рисков они не несут.

Регулирование

Эта статья или раздел описывает ситуацию применительно лишь к одному региону, возможно, нарушая при этом правило о взвешенности изложения. Вы можете помочь Википедии, добавив информацию для других стран и регионов.

В некоторых странах создание, производство, применение продукции с использованием ГМО подлежит государственному регулированию. В том числе и в России, где исследовано и одобрено к применению несколько видов трансгенных продуктов.

До 2014 года в России ГМО можно было выращивать только на опытных участках, был разрешён ввоз некоторых сортов (не семян) кукурузы, картофеля, сои, риса и сахарной свёклы (всего 22 линии растений). С 1 июля 2014 г. должно было вступить в силу Постановление Правительства Российской Федерации от 23 сентября 2013 г. № 839 «О государственной регистрации генно-инженерно-модифицированных организмов, предназначенных для выпуска в окружающую среду, а также продукции, полученной с применением таких организмов или содержащей такие организмы». 16 июня 2014 года Правительством РФ принято постановление № 548 о переносе срока вступления в силу постановления № 839 на 3 года, то есть на 1 июля 2017 года.

В феврале 2015 года в Госдуму внесен законопроект о запрете на выращивание ГМО в России, который был принят в первом чтении в апреле 2015. Запрет не касается использования генномодифицированных организмов (ГМО) для проведения экспертиз и научно-исследовательских работ. Согласно законопроекту, правительство сможет запрещать ввоз в Россию генно-модифицированных организмов и продукции по результатам мониторинга их воздействия на человека и окружающую среду. Импортёры генно-модифицированных организмов и продукции будут обязаны пройти регистрационные процедуры. За использование ГМО с нарушением разрешённого вида и условий использования предусматривается административная ответственность: штраф на должностных лиц предлагается установить в размере от 10 тысяч до 50 тысяч рублей; на юридических лиц — от 100 до 500 тысяч рублей.

Список ГМО, одобренных в России для использования, в том числе в качестве пищи населением:

  • Соя (Линии)
    • А2704-12 (Авентис КропСайнс, устойчивость к глюфосинату аммония)
    • А5547-127 (Авентис КропСайнс, устойчивость к глюфосинату аммония)
    • CV127 (BASF, устойчивость к гербициду imidazolinone)
    • GTS 40-3-2 (Монсанто, устойчивость к глифосату)
    • MON89788 (Монсанто, устойчивость к глифосату)
  • Картофель
    • Сорт Russet Burbank Newleaf, (Монсанто, устойчивость к колорадскому жуку, 2000—2007)
    • Сорт Superior Newleaf, (Монсанто, устойчивость к колорадскому жуку, 2000—2008)
    • «Елизавета+ 2904/1 kgs», «Луговской+ 1210 amk» (Центр «Биоинженерия» РАН, Россия; Cry-токсины и метаболизм антибиотиков неомицин и канамицин)
  • Кукуруза
    • Линия 3272 (Сингента)
    • Линия Bt11 (Сингента Сидс, устойчивость к зерновому точильщику и глюфосинату аммония)
    • Линия GA 21 (Монсанто, устойчивость к глифосату)
    • Линия MIR 162 (Сингента)
    • Линия MIR 604 (Сингента)
    • Линия MON 810 (Монсанто, устойчивость к стеблевому мотыльку)
    • Линия MON 863 (Монсанто, устойчивость к Диабротике)
    • Линия MON 88017 (Монсанто)
    • Линия NK-603 (Монсанто, устойчивость к глифосату)
    • Линия Т-25 (Авентис КропСайнс, устойчивость к глюфосинату аммония)
  • Рис
    • Линия LL 62 (Баер КропСайнс, устойчивость к глюфосинату аммония)
  • Сахарная свёкла
    • Линия H7-1 (Монсанто, устойчивость к глифосату)
    • Линия 77 (Сингента Сидс и Монсанто, устойчивость к глифосату, 2001—2006)

Примечания

  1. ВОЗ | Часто задаваемые вопросы по генетически модифицированным продуктам питания. www.who.int. Дата обращения 24 марта 2017.
  2. genetically modified organism // Glossary of biotechnology for food and agriculture: a revised and augmented edition of the glossary of biotechnology and genetic engineering. Rome, 2001, FAO, ISSN 1020-0541
  3. 1 2 European Commission Directorate-General for Research and Innovation; Directorate E — Biotechnologies, Agriculture, Food; Unit E2 — Biotechnologies (2010) p.16
  4. What is agricultural biotechnology? // The state of food and agriculture 2003—2004: The state of food and agriculture 2003—2004. Agricultural Biotechnology. FAO Agriculture Series № 35. (2004)
  5. Лещинская И. Б. Генетическая инженерия (1996). Дата обращения 4 сентября 2009. Архивировано 21 января 2012 года.
  6. Preetmoninder Lidder and Andrea Sonnino. Biotechnologies for the management of genetic resources for food and agriculture. FAO Commission on genetic resources for food and agriculture, 2011
  7. Brookes G, Barfoot P. The global income and production effects of genetically modified (GM) crops 1996—2011.GM Crops Food. 2012 Oct-Dec;3(4):265-72.
  8. Klümper, Wilhelm; Qaim, Matin. A Meta-Analysis of the Impacts of Genetically Modified Crops (англ.) // PLoS ONE (англ.)русск. : journal. — 2014. — Vol. 9, no. 11. — P. —111629. — DOI:10.1371/journal.pone.0111629.
  9. Trait Introduction Method: Agrobacterium tumefaciens-mediated plant transformation
  10. Microparticle bombardment of plant cells or tissue
  11. Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects (2004)
  12. Jeffrey Green,Thomas Ried. Genetically Engineered Mice for Cancer Research: Design, Analysis, Pathways, Validation and Pre-clinical Testing. Springer, 2011
  13. Patrick R. Hof,Charles V. Mobbs. Handbook of the neuroscience of aging. p537-542
  14. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice//Genes & Dev. 2009. 23: 1183—1194
  15. Инсулин растворимый (Insulin soluble ): инструкция, применение и формула
  16. История развития биотехнологии (недоступная ссылка). Дата обращения 4 сентября 2009. Архивировано 12 июля 2007 года.
  17. Zenaida Gonzalez Kotala. UCF professor develops vaccine to protect against black plague bioterror attack (англ.) (30 July 2008). Дата обращения 3 октября 2009. Архивировано 21 января 2012 года.
  18. Получение препарата против ВИЧ из растений (1 апреля 2009). Дата обращения 4 сентября 2009. Архивировано 21 января 2012 года.
  19. Инсулин из растений проходит испытания на людях (недоступная ссылка — история ). Membrana (12 января 2009). Дата обращения 4 сентября 2009.
  20. Ирина Власова. Американским пациентам сделают козу (недоступная ссылка) (11 февраля 2009). Дата обращения 4 сентября 2009. Архивировано 6 апреля 2009 года.
  21. Matt Ridley. Genome: The Autobiography of a Species In 23 Chapters.HarperCollins, 2000, 352 pages
  22. The Mission Impossible of Genetic Redesign For Longevity
  23. Элементы — новости науки: Трансгенный хлопок помог китайским крестьянам победить опасного вредителя
  24. И поросла Россия трансгенными берёзками… | Наука и техника | Наука и технологии России Архивная копия от 19 февраля 2009 на Wayback Machine
  25. Monsanto Seed Saving and Legal Activities
  26. Caleb Garling (San Francisco Chronicle), Monsanto seed suit and software patents // SFGate, February 23, 2013: «company’s genetically modified and pesticide-resistant seeds, which are patent-protected. .. Monsanto uses a similar strategy with its seeds. Farmers license their use; technically, they don’t buy them.»
  27. Are GM plants fertile, or do farmers have to buy new seeds every year? // EuropaBio: «All GM plants commercialized are as fertile as their conventional counterparts.»
  28. GM Events with Male sterility
  29. Gene: barnase
  30. 1 2 3 4 ISAAA Brief 46-2013: Executive Summary. Global Status of Commercialized Biotech/GM Crops: 2013 Архивная копия от 22 февраля 2014 на Wayback Machine // ISAAA
  31. Общая площадь посевов генно-модифицированных культур в 1,5 раза превышает территорию США // ИноСМИ, по материалам «Mother Jones», США, 26/02/2013
  32. ISAAA Brief 44-2012: Slides & Tables, slide 4-5
  33. Pigs’ genetic code altered in bid to tackle deadly virus
  34. Simon G. Lillico, Chris Proudfoot, Tim J. King, Wenfang Tan, Lei Zhang, Rachel Mardjuki, David E. Paschon, Edward J. Rebar, Fyodor D. Urnov, Alan J. Mileham, David G. McLaren, C. Bruce A. Whitelaw.(2016). Mammalian interspecies substitution of immune modulatory alleles by genome editing. Scientific Reports,; 6: 21645 DOI:10.1038/srep21645
  35. Super-biofuel cooked up by bacterial brewers — tech — 08 December 2008 — New Scientist
  36. MEMBRANA | Мировые новости | В Японии стартуют продажи настоящих синих роз
  37. Б. Глик, Дж. Пастернак. Молекулярная биотехнология = Molecular Biotechnology. — М.: Мир, 2002. — С. 517. — 589 с. — ISBN 5-03-003328-9.
  38. Berg P et. al. Science, 185, 1974, 303.
  39. Breg et al., Science, 188, 1975, 991-994.
  40. 1 2 Б. Глик, Дж. Пастернак. Контроль применения биотехнологических методов // Молекулярная биотехнология = Molecular Biotechnology. — М.: Мир, 2002. — С. 517-532. — 589 с. — ISBN 5-03-003328-9.
  41. А. П. Гетьман, В. И. Лозо. Правовое регулирование развития биотехнологии и использования генетически модифицированных организмов (гмо) в Европейском союзе (рус.) // Проблемы законности № 117. — 2011. — № УДК 349.6.061.1ЭС.
  42. Frequently asked questions on genetically modified foods
  43. https://web.archive.org/web/20120907023039/http://www.ama-assn.org/resources/doc/csaph/a12-csaph2-bioengineeredfoods.pdf
  44. Tyshko NV% 5BAuthor] genetically — PubMed — NCBI
  45. Yanhui Lu, Kongming Wu, Yuying Jiang, Yuyuan Guo, Nicolas Desneux. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services (En) // Nature. — 2012/07. — Т. 487, вып. 7407. — С. 362—365. — ISSN 1476-4687. — DOI:10.1038/nature11153.
  46. Wilhelm Klümper, Matin Qaim. A Meta-Analysis of the Impacts of Genetically Modified Crops (англ.) // PLOS One (англ.)русск.. — Public Library of Science, 2014-11-03. — Vol. 9, iss. 11. — P. e111629. — ISSN 1932-6203. — DOI:10.1371/journal.pone.0111629.
  47. Архивированная копия (недоступная ссылка). Дата обращения 23 февраля 2017. Архивировано 28 января 2017 года.
  48. Российское правительство разрешило регистрировать семена генно-модифицированных растений. Ведомости. 9 декабря 2013
  49. Постановление Правительства Российской Федерации от 23 сентября 2013 г. № 839 «О государственной регистрации генно-инженерно-модифицированных организмов, предназначенных для выпуска в окружающую среду, а также продукции, полученной с применением таких организмов или содержащей такие организмы»
  50. О переносе срока введения в действие государственной регистрации генно-инженерно-модифицированных организмов. government.ru. Дата обращения 14 июня 2016.
  51. Кабмин отложил введение госрегистрации ГМО в России на 3 года // Коммерсантъ.
  52. В Госдуму внесен законопроект о запрете на выращивание ГМО в России. lenta.ru. Дата обращения 14 июня 2016.
  53. ГД приняла в I чтении законопроект о запрете разведения ГМО в России. РИА Новости. Дата обращения 14 июня 2016.
  54. Госдума весной может принять закон о запрете использования ГМО в РФ. РИА Новости. Дата обращения 14 июня 2016.
  55. В России зарегистрировано около ста ферментных препаратов и пищевых добавок, приготовленных с использованием разрешённых ГМО и ГММ.
  56. http://www.lib.susu.ac.ru/ftd?base=SUSU_METHOD&key=000309465&dtype=F&etype=.pdf стр 141—141 — данные на 2005 год
  57. GM Crop Events approved in Russian Federation, Total: 19 events approved // ISAAA
  58. ГМ-сорта картофеля «Елизавета 2904/1 kgs» и «Луговской 1210 amk» выведены в России.
  59. Как мифы о ГМО укоренились в общественном мнении // Lenta.ru 2013/08/14
  60. «The battle of the scientists» // The Economist, Dec 20th 2014
  61. 107 Nobel laureates sign letter blasting Greenpeace over GMOs
  62. Laureates Letter Supporting Precision Agriculture (GMOs)
  63. Список нобелевских лауреатов, подписавших письмо
  64. 1 2 John E. Peck. Critical Faith-Based Perspectives On Biotech And Genetically Modified Organisms GMOs (англ.) (недоступная ссылка). familyfarmdefenders.org (2006). Архивировано 5 сентября 2008 года.
  65. Позиция католиков разных стран по вопросам ГМО не совпадает Biosafety.ru — Альянс СНГ «За Биобезопасность» Архивировано 12 марта 2012 года.
  66. Genetically modified crops get the Vatican’s blessing — science-in-society — 04 June 2009 — New Scientist
  67. Khaoula Belhaj, Angela Chaparro-Garcia, Sophien Kamoun and Vladimir Nekrasov (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system Plant Methods , 9:39 doi:10.1186/1746-4811-9-39
  68. Golic, K. G. (2013) RNA-Guided Nucleases: A New Era for Engineering the Genomes of Model and Nonmodel Organisms. Genetics, 195(2), 303—308.
  69. Giedrius Gasiunas, Virginijus Siksnys (2013) RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Архивная копия от 5 декабря 2013 на Wayback Machine Trends in Microbiology, 21(11), 562—567, doi: 10.1016/j.tim.2013.09.001